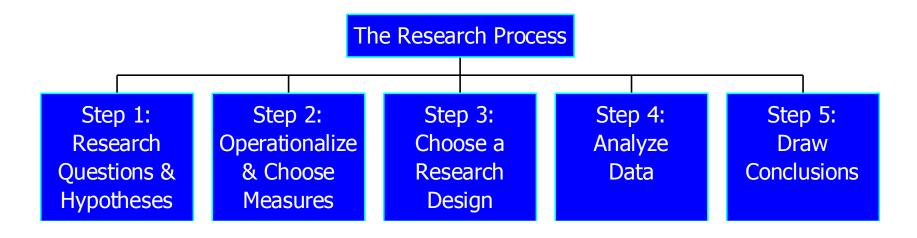


Module 1: Introduction to Statistics

The Applied Research Center

Module 1 Overview

- The Role of Statistics
- The Research Process
 - Threats to Validity
- Statistical Terminology
- Scales of Measurement
- Introduction to Descriptive and Inferential Statistics


The Role of Statistics

- The goal of virtually all quantitative research studies is to identify and describe relationships among constructs.
- Data are collected in a very systematic manner and conclusions are drawn based on the data.
- At a basic level, statistical techniques allow us to aggregate and summarize data in order for researchers to draw conclusions from their study.

The Typical Research Process

- The typical quantitative study involves a series of steps, one of which is statistical analysis.
- Note: These are steps in the research process and NOT sections of the dissertation.

Step 1: Research Questions

- Research questions reflect the problem that the researcher wants to investigate.
- Research questions can be formulated based on theories, past research, previous experience, or the practical need to make data-driven decisions in a work environment.
- Research questions are vitally important because they, in large part, dictate what type of statistical analysis is needed as well as what type of research design may be employed.

Examples of Research Questions

- How is financial need related to retention after the freshman year of college?
- What types of advertising campaigns produce the highest rates of inquiries among prospective applicants at NSU?
- How do males and females differ with respect to statistics self-efficacy?
- How does a body image curriculum improve body image in college females?

Hypotheses

- While research questions are fairly general, hypotheses are specific predictions about the results, made prior to data collection.
 - As financial need increases, the likelihood of retention decreases.
 - > Personalized letters result in more inquiries than brochures.
 - Males have higher levels of self-efficacy than females.
 - Body image will improve as a result of the new curriculum.

Step 2: Operationalize & Choose Measures

- Many variables of interest in education and psychology are abstract concepts that cannot be directly measured.
- This doesn't preclude us from studying these things, but requires that we clearly define the specific behaviors that are related to the concept of interest.

Measuring Abstract Concepts

- How does one measure retention, inquiry rate, statistics self-efficacy, and body image?
- The process of defining variables and choosing a reliable and accurate measurement tool is called operationalizing your variables.
- Good measurement is vital to the trustworthiness of your results!

Step 3: Choose a Research Design

- In Step 3, we develop a plan for collecting the data we need (i.e., a "blueprint" for the study)
- This is called research design, and includes things such as:
 - Who will participate in the study?
 - Who will receive the intervention?
 - Will there be a "control group"?
 - Will data be collected longitudinally?
 - What instrument will be used to collect data?
 - What type of data will be collected?

Threats to Validity

- Internal Validity
 - Problems associated with the experimental procedures or experiences of participants
- External Validity
 - Problems that affect the generalizability of the results
- The choice of design impacts the validity of your final results

Step 4: Analyze The Data

- Once the data have been collected, the results must be organized and summarized so that we can answer the research questions.
- This is the purpose of statistics
- The choice of analysis at this stage depends entirely on two prior steps:
 - The research questions
 - How the variable is measured

Step 5: Draw Conclusions

- After analyzing the data, we can make judgments about our initial research questions and hypotheses.
- Are these results consistent with previous studies?
- The conclusions drawn from a study may provide a starting point for new research.

The Role of Statistics

- Despite the anxiety usually associated with statistics, data analysis is a relatively small piece of the larger research process.
- There is a misconception that the trustworthiness of statistics is independent of the research process itself.
- This is **absolutely** incorrect!
- A statistical analysis can in no way compensate for a poorly designed study!!!!

Statistical Terminology

Population

- A population is the **entire** set of individuals that we are interested in studying.
- This is the group that we want to generalize our results to.
- Although populations can vary in size, they are usually quite large.
- Thus, it is usually not feasible to collect data from the entire population.

Sample

- A sample is a **subset** of individuals selected from the population.
- In the best case, the sample will be representative of the population.
- That is, the characteristics of the individuals in the sample will mirror those in the population.

Parameters vs. Statistics

- In most studies, we wish to quantify some characteristic of the population.
- Example:
 - The retention rate, inquiry rate, average level of self-efficacy, average level of body image
- This is the population parameter
- Parameters are generally unknown, and must be estimated from a sample
- The sample estimate is called a statistic

Variables

• A characteristic that takes on different values for different individuals in a sample is called a variable.

• Examples:

- Retention (yes/no)
- Inquiry about NSU (yes/no)
- Self-efficacy (score on self-efficacy questionnaire)
- Body image (score on body image questionnaire)

Independent Variables (IV)

- The "explanatory" variable
- The variable that attempts to explain or is purported to cause differences in a second variable.
- In experimental designs, the intervention is the IV.
- Example:
 - Does a new curriculum improve body image?
 - The curriculum is the IV

Dependent Variables (DV)

- The "outcome" variable
- The variable that is thought to be influenced by the independent variable
- Example:
 - Does a new curriculum improve body image?
 - Body image is the DV

Examples

- Do students prefer learning statistics online or face to face?
 - What is the IV? DV?
- How do students who have never had statistics compare to students who have previously had statistics in terms of their anxiety levels?
 - What is the IV? DV?

Confounding Variables

- Researchers are usually only interested in the relationship between the IV and DV.
- Confounding variables represent unwanted sources of influence on the DV, and are sometimes referred to as "nuisance" variables.
- Example:
 - Does a new curriculum improve body image?
 - Such things as heredity, family background, previous counseling experiences, etc. can also impact the DV.

Controlling Confounding Variables

- Typically, researchers are interested in excluding, or controlling for, the effects of confounding variables.
- This is generally not a statistical issue, but is accomplished by the research design.
- Certain types of designs (e.g., experiments) better control the effects of confounding variables.
- If an experiment or an equivalent control group is not possible →ANCOVA

Scales of Measurement

Variable Measurement Scales

- For any given variable that we are interested in, there may be a variety of measurement scales that can be used:
 - What is your annual income? _____
 - What is your annual income?
 a. 10,000-20,000 b. 20,000-30,000 c. 30,000-40,000 d.
 40,000-50,000 e. 50,000 or above
- Variable measurement is the second factor that influences the choice of statistical procedure.

Scales of Measurement

- Nominal
- Ordinal
- Interval
- Ratio

Nominal Scale

- Observations fall into different categories or groups.
- Differences among categories are qualitative, not quantitative.
- Examples:
 - Gender
 - Ethnicity
 - Counseling method (cognitive vs. humanistic)
 - Retention (retained vs. not retained)

Ordinal Scale

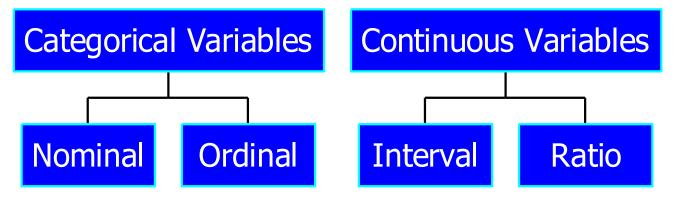
- Categories can be rank ordered in terms of amount or magnitude.
- Categories possess an inherent order, but the amount of difference between categories is unknown.
- Examples:
 - Class standing
 - Letter grades (A,B,C,D,F)
 - Likert-scale survey responses (SD, D, N, A, SA)

Interval Scale

- Categories are ordered, but now the intervals for each category are exactly the same size.
- That is, the distance between measurement points represent equal magnitudes (e.g., the distance between point A and B is the same as the distance between B and C).
- Examples:
 - Fahrenheit scale of measuring temperature
 - Chronological scale of dates (1997 A.D.)
 - Standard scores (z-scores)

Ratio Scale

- Same properties as the interval scale, but with an additional feature
- Ratio scale has an absolute 0 point.
- Absolute 0 point permits the use of ratios (e.g., A is "twice as large" as B).
- Examples:
 - Number of children
 - Weight
 - Annual income


Categorical vs. Continuous Variables

- In practice, it is not usually necessary to make such fine distinctions between measurement scales.
- Two distinctions, categorical and continuous are usually sufficient.
- Categorical variables consist of separate, indivisible categories (i.e., men/women).
- Continuous variables yield values that fall on a numeric continuum, and can (theoretically) take on an infinite number of values.

Level of Measurement Summary

In practice, the four levels of measurement can usually be classified as follows:

 Continuous variables are generally preferable because a wider range of statistical procedures can be applied

Examples

What is the level of measurement of

- Temperature ^OC?
- Color?
- Income of professional baseball players?
- Degree of agree (I = Strongly Disagree,
 5 = Strongly Agree)?

Descriptive Statistics

- Procedures used to summarize, organize, and simplify data (data being a collection of measurements or observations) taken from a sample (i.e., mean, median, mode).
- Examples:
 - > The average score on the Rosenberg Self-Esteem Scale was 7.5
 - ▶ 63% of the sample described themselves as Caucasian

Inferential Statistics

- Techniques that allow us to make inferences about a population based on data that we gather from a sample.
- Study results will vary from sample to sample strictly due to random chance (i.e., sampling error).
- Inferential statistics allow us to determine how likely it is to obtain a set of results from a single sample.
- > This is also known as testing for "statistical significance."

Module 1 Summary

- The Role of Statistics
- Statistical Terminology
- Scales of Measurement
- Introduction to Descriptive and Inferential Statistics

Review Activity and Quiz

- Please complete the Module 1 Review Activity: Statistical Terminology located in Module 1.
- Upon completion of the Review Activity, please complete the Module 1 Quiz.
- Please note that all modules in this course build on one another; as a result, completion of the Module I Review Activity and Module I Quiz are required before moving on to Module 2.
- You can complete the review activities and quizzes as many times as you like.

Upcoming Modules

- Module I: Introduction to Statistics
- Module 2: Introduction to SPSS
- Module 3: Descriptive Statistics
- Module 4: Inferential Statistics
- Module 5: Correlation
- Module 6: *t*-Tests
- Module 7: ANOVAs
- Module 8: Linear Regression
- Module 9: Nonparametric Procedures

